Distinguishing Between Two Types of Cosmic Ray Signals Observed by ARIANNA Stations Anbarasi Thangamani, Cheng Han Tang, Dr. Steven Barwick

Introduction & Background

- Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) utilizes radio-frequency sensors buried in the Antarctic ice to detect high-energy neutrinos.
- ARIANNA researchers have possibly identified cosmic ray signals reflected producing radio pulses resembling neutrino signals.
- The aim is to collect a clean sample of cosmic ray events that are reflected off internal layers in the ice to develop techniques for distinguishing them from true neutrino events.

 $\underline{RCR} = reflected cosmic rays$ <u>Back lobe CR = cosmic</u> rays entering through the back lobe of downward-facing antennas

Focus: Differentiating between **RCR events and back lobe CR events**

Figure 1 ARIANNA stations on the Ross Ice-Shelf at Moore's Bay in Antarctica

Department of Physics and Astronomy, University of California, Irvine **ARIANNA** Collaboration

Methodology

- Events collected from stations 14, 17, 19, & 30 which pass deep learning and time cuts
- Events are then sorted by Chi-value and Signal-to-Noise ratio
- Visual comparison of collected data with simulated back lobe and RCR events
- Cross-comparison of observation with peer

Figure 4 Station 30 Signal-to-Noise Ratio to Chi value graph

data

Future Developments

Utilization of key characteristics of back lobe events to extend and further improve the existing neural network's ability to distinguish between the two types of signals.

Figure 2 Suspected RCR signal from Station

Figure 3 Suspected back lobe CR signal from Station 30

Time		Channels	Waveform	Frequency
•	Delay between two parallel channels ≈ 15ns	 Parallel channels All channels when signal approaches the antennas diagonally 	 High to low frequency as signal proceeds 	 One high peak Exponential decay
•	Inconclusive	 One channel or three channels 	 Noticeable high frequency at the start of the signal 	 Two high peaks No noticeable exponential decay

Table 1 Characteristics of RCR and back lobe CR signals collected from simulated

Acknowledgement Ryan Rice-Smith

References

[1] S. W. Barwick, C. Glaser, arXiv:2208.04971v2 (2022) [2] A. Anker, S. W. Barwick, et al., arXiv:1909.00840v3 (2019)

