Polarization Reconstruction of Cosmic Rays with the ARIANNA Neutrino Radio Detector

Leshan Zhao

University of California, Irvine

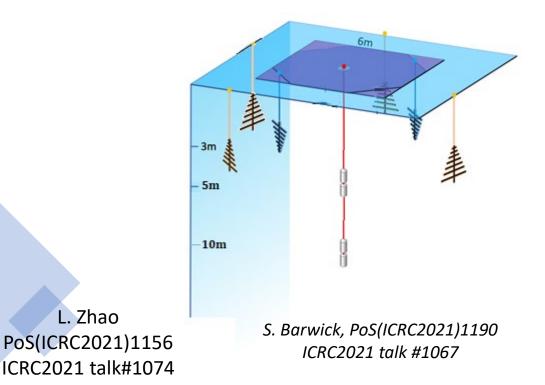
for the ARIANNA Collaboration

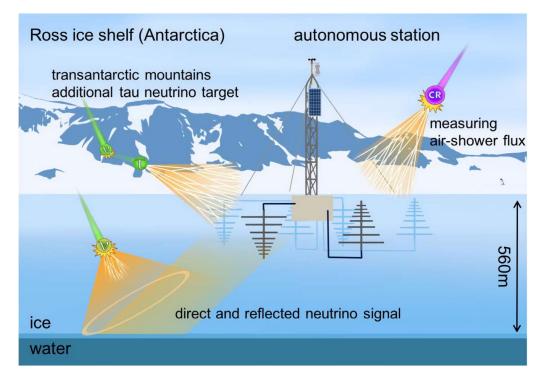
L. Zhao PoS(ICRC2021)1156 ICRC2021 talk#1074

ICRC 2021 July 14th 2021 Berlin, Germany

Motivation

- No accelerator beam of ultra-high energy neutrinos to calibrate ARIANNA
- Cosmic rays generate similar radio signals with known polarization properties
- Polarization is required for neutrino direction in ARIANNA
- Use cosmic rays as test beams to assess and verify reconstruction capabilities

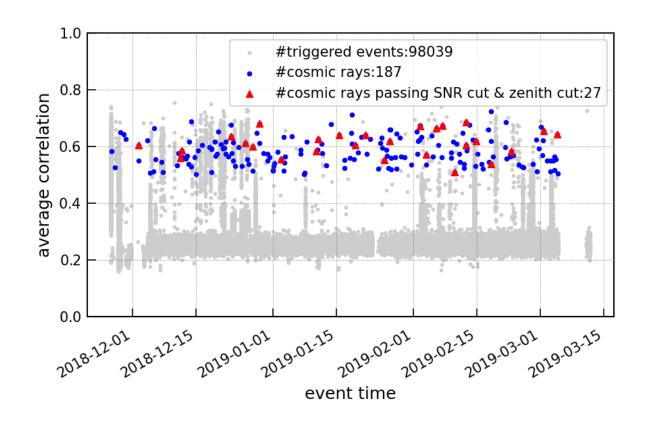



Station Design

• 4 upward facing LPDAs

L. Zhao

- 2 downward facing LPDAs
- 2 dipole antennas (5m, 10m)

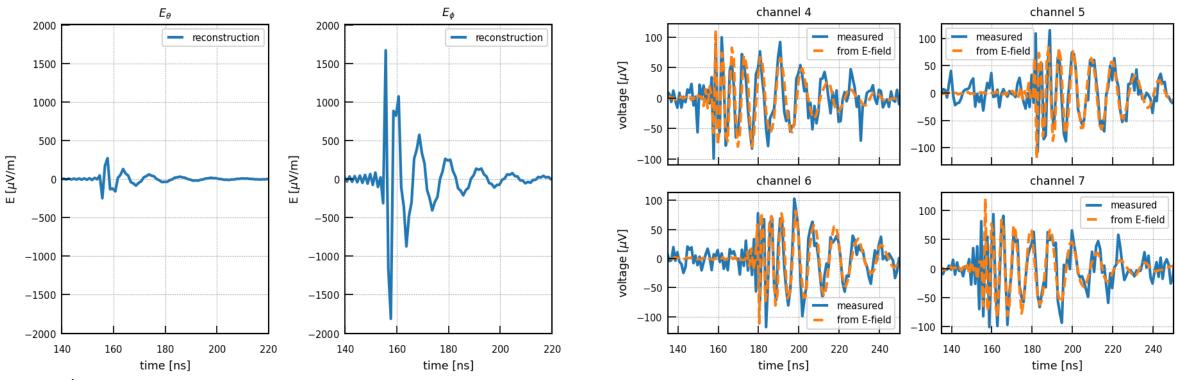


S. Barwick, PoS(ICRC2021)1190 ICRC2021 talk #1067

Cosmic rays identification

Data taken from Nov 2018 to Mar 2019

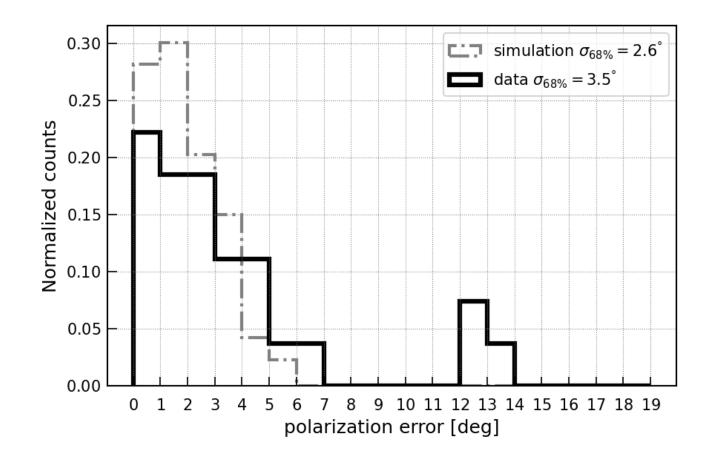
- Correlate voltage traces with simulation
 - Low correlation: thermal events
 - High correlation: cosmic rays, wind events, man-made signals
- Useful characteristics of cosmic ray generated radio signals:
 - Temporally & spatially randomly distributed
 - Plane wave -> similar signal in parallel LPDAs



Cut name	Number of events remaining (data)	Cut efficiency from simulation (cosmic rays remaining / total cosmic rays)
Rate cut	33884	N/A
Correlation cut	298	0.97
Parallel channel cut	218	1.00
Downward cut	206	0.99
Dipole cut	192	0.99
Arrival direction cut	187	0.99
SNR cut	35 (0.19)	0.11
Zenith cut	27 (0.77)	1.00

L. Zhao PoS(ICRC2021)1156 ICRC2021 talk#1074

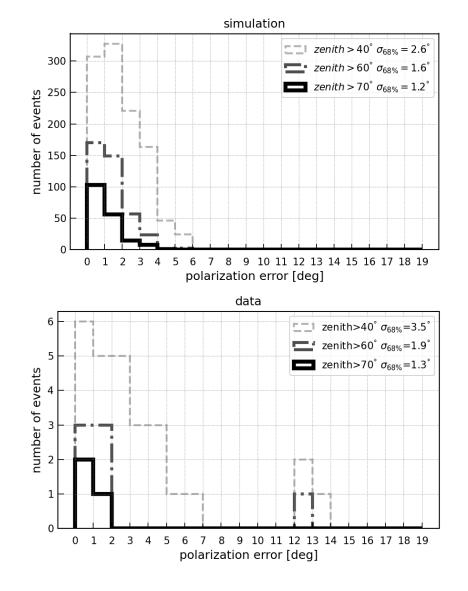
Polarization reconstruction


- Reconstruct the electric field using forwardfolding [A.Nelles *PoS ICRC2019 366 (2020)*]
- Good agreement with measurement
- Not perfect at the highest frequencies at the early times

L. Zhao PoS(ICRC2021)1156 ICRC2021 talk#1074

Polarization reconstruction

- *polarization* = $tan^{-1}(\sqrt{E_{\phi}}/\sqrt{E_{\theta}})$
 - E_{ϕ} , E_{θ} : energy fluence of the electric field
- expected polarization = $\vec{v} \times \vec{B}_{geo}$
 - \vec{v} : reconstructed direction of the cosmic ray
 - Accounts for geomagnetic Cherenkov effect
 - Does not account for Askaryan effect
- polarization error = |polarization expected polarization|
- Significant improvement compared to A.Nelles *PoS ICRC2019 366 (2020)*
 - 7.0 deg -> 3.5 deg
 - Increase in purity of data set



Error in expected polarization dominates

- Expected polarization does not account for Askaryan effect -> is not perfectly accurate
- polarization error =

 |reconstructed polarization –
 expected polarization|
- Askaryan effect weakens with increasing zenith angle
 - Horizontal cosmic rays travel through less dense air -> long air shower -> effect of geomagnetic field increases
 - Large zenith -> large angle with respect to geomagnetic field -> stronger geomagnetic effect
- 3.5 degree is the upper bound of the 'true' reconstruction resolution
- Simulation indicates the polarization resolution is 1 degree

L. Zhao PoS(ICRC2021)1156 ICRC2021 talk#1074

8 of 9

Conclusion

- Cosmic rays can be used to measure the polarization reconstruction capabilities
- Data from other seasons/ future detector arrays can be added to improve statistics
- This technique can be used to calibrate detectors in future arrays

- Polarization reconstruction resolution is measured to be 3.5 degree
- The error is dominated by the error in expected polarization due to Askaryan effect, 3.5 degree is the upper bound of the 'true' reconstruction resolution
- More data is needed for a more accurate measurement